Kernels on graphs have had limited options for node-level problems. To address this, we present a novel, generalized kernel for graphs with node feature data for semi-supervised learning. The kernel is derived from a regularization framework by treating the graph and feature data as two Hilbert spaces. We also show how numerous kernel-based models on graphs are instances of our design. A kernel defined this way has transductive properties, and this leads to improved ability to learn on fewer training points, as well as better handling of highly non-Euclidean data. We demonstrate these advantages using synthetic data where the distribution of the whole graph can inform the pattern of the labels. Finally, by utilizing a flexible polynomial of the graph Laplacian within the kernel, the model also performed effectively in semi-supervised classification on graphs of various levels of homophily.
translated by 谷歌翻译
Gaussian process state-space model (GPSSM) is a fully probabilistic state-space model that has attracted much attention over the past decade. However, the outputs of the transition function in the existing GPSSMs are assumed to be independent, meaning that the GPSSMs cannot exploit the inductive biases between different outputs and lose certain model capacities. To address this issue, this paper proposes an output-dependent and more realistic GPSSM by utilizing the well-known, simple yet practical linear model of coregionalization (LMC) framework to represent the output dependency. To jointly learn the output-dependent GPSSM and infer the latent states, we propose a variational sparse GP-based learning method that only gently increases the computational complexity. Experiments on both synthetic and real datasets demonstrate the superiority of the output-dependent GPSSM in terms of learning and inference performance.
translated by 谷歌翻译
While many systems have been developed to train Graph Neural Networks (GNNs), efficient model inference and evaluation remain to be addressed. For instance, using the widely adopted node-wise approach, model evaluation can account for up to 94% of the time in the end-to-end training process due to neighbor explosion, which means that a node accesses its multi-hop neighbors. On the other hand, layer-wise inference avoids the neighbor explosion problem by conducting inference layer by layer such that the nodes only need their one-hop neighbors in each layer. However, implementing layer-wise inference requires substantial engineering efforts because users need to manually decompose a GNN model into layers for computation and split workload into batches to fit into device memory. In this paper, we develop Deep Graph Inference (DGI) -- a system for easy and efficient GNN model inference, which automatically translates the training code of a GNN model for layer-wise execution. DGI is general for various GNN models and different kinds of inference requests, and supports out-of-core execution on large graphs that cannot fit in CPU memory. Experimental results show that DGI consistently outperforms layer-wise inference across different datasets and hardware settings, and the speedup can be over 1,000x.
translated by 谷歌翻译
Deep neural networks (DNNs) have successfully been applied in many fields in the past decades. However, the increasing number of multiply-and-accumulate (MAC) operations in DNNs prevents their application in resource-constrained and resource-varying platforms, e.g., mobile phones and autonomous vehicles. In such platforms, neural networks need to provide acceptable results quickly and the accuracy of the results should be able to be enhanced dynamically according to the computational resources available in the computing system. To address these challenges, we propose a design framework called SteppingNet. SteppingNet constructs a series of subnets whose accuracy is incrementally enhanced as more MAC operations become available. Therefore, this design allows a trade-off between accuracy and latency. In addition, the larger subnets in SteppingNet are built upon smaller subnets, so that the results of the latter can directly be reused in the former without recomputation. This property allows SteppingNet to decide on-the-fly whether to enhance the inference accuracy by executing further MAC operations. Experimental results demonstrate that SteppingNet provides an effective incremental accuracy improvement and its inference accuracy consistently outperforms the state-of-the-art work under the same limit of computational resources.
translated by 谷歌翻译
机器人钉孔组装是机器人自动化研究中的重要任务。加强学习(RL)与深度神经网络(DNN)相结合,导致了这一领域的非凡成就。但是,在融合应用程序的独特环境和任务要求下,当前基于RL的方法几乎无法表现出色。因此,我们提出了一种新设计的基于RL的方法。此外,与其他方法不同,我们专注于DNN的结构而不是RL模型的创新。从RGB摄像机和力/扭矩(F/T)传感器中输入的数据,将其输入到多输入分支网络中,并且当前状态中的最佳动作是由网络输出的。所有训练和实验都是在现实的环境中进行的,从实验结果中,这种多传感器融合方法已显示在不确定和不稳定的环境中具有0.1mm精度的刚性钉钉组装任务中很好地工作。
translated by 谷歌翻译
当一个用户将多个不同的任务卸载到边缘服务器时,任务调度是一个关键问题。当用户有多个任务要卸载,并且一次只能将一个任务传输到服务器,而服务器根据传输顺序处理任务时,问题是NP-HARD。但是,传统优化方法很难快速获得最佳解决方案,而基于强化学习面孔的方法和过度的动作空间和缓慢收敛的挑战。在本文中,我们提出了一种基于RL的Digital Twin(DT)辅助任务调度方法,以提高RL的性能和收敛性。我们使用DT来模拟代理商做出的不同决策的结果,以便一个代理可以一次尝试多个操作,或者类似地,多个代理可以在DT中并行与环境交互。通过这种方式,RL的勘探效率可以通过DT显着提高,因此RL可以更快地收敛,而局部最优性不太可能发生。特别是,设计了两种算法来制定任务调度决策,即DT辅助异步Q学习(DTAQL)和DT辅助探索Q-Learning(DTEQL)。仿真结果表明,两种算法都通过提高勘探效率显着提高了Q学习的收敛速度。
translated by 谷歌翻译
在异质图上的自我监督学习(尤其是对比度学习)方法可以有效地摆脱对监督数据的依赖。同时,大多数现有的表示学习方法将异质图嵌入到欧几里得或双曲线的单个几何空间中。这种单个几何视图通常不足以观察由于其丰富的语义和复杂结构而观察到异质图的完整图片。在这些观察结果下,本文提出了一种新型的自我监督学习方法,称为几何对比度学习(GCL),以更好地表示监督数据是不可用时的异质图。 GCL同时观察了从欧几里得和双曲线观点的异质图,旨在强烈合并建模丰富的语义和复杂结构的能力,这有望为下游任务带来更多好处。 GCL通过在局部局部和局部全球语义水平上对比表示两种几何视图之间的相互信息。在四个基准数据集上进行的广泛实验表明,在三个任务上,所提出的方法在包括节点分类,节点群集和相似性搜索在内的三个任务上都超过了强基础,包括无监督的方法和监督方法。
translated by 谷歌翻译
现有视觉语言预训练(VLP)方法主要依赖于配对的图像文本数据集,这些数据集由大量人类劳动注释,或者从互联网上爬行,然后是精心制作的数据清洁技术。为了减少对良好的图像文本对的依赖,有望直接利用仅大规模的仅文本和仅图像的语料库。本文提出了一种数据增强方法,即跨模式cutmix(CMC),用于在未配对的VLP中进行隐式跨模式对齐学习。具体而言,CMC将自然句子从文本视图转换为多模式视图,在该视图中,句子中的视觉词语单词被带有相似语义的各种图像贴片随机替换。拟议中的CMC有几个吸引人的礼节。首先,它增强了数据多样性,同时保持语义含义完好无损地解决了对齐数据稀缺的问题;其次,通过将跨模式噪声连接到单模式数据上,它指导模型以学习跨模态的令牌级相互作用,以更好地降级。此外,我们提出了一种名为VLMIXER的新的未配对VLP方法,该方法将CMC与对比度学习集成在一起,以将Uni-Mododal和多模式视图汇总在一起,以在不同模式之间进行更好的实例级别对齐。在五个下游任务上进行的广泛实验表明,VLMIXER可以超过以前最先进的未配对VLP方法。
translated by 谷歌翻译
现有的单眼深度估计方法在不同的场景中实现了出色的鲁棒性,但它们只能检索仿射不变的深度,最多可达到未知的规模和变化。但是,在一些基于视频的场景中,例如视频中的视频深度估计和3D场景重建,驻留在人均预测中的未知量表和偏移可能会导致深度不一致。为了解决这个问题,我们提出了一种局部加权的线性回归方法,以恢复比例并以非常稀疏的锚点的转移,从而确保沿连续帧的比例一致性。广泛的实验表明,我们的方法可以在几个零击基准测试中最多将现有最新方法的性能提高50%。此外,我们合并了超过630万个RGBD图像,以训练强大而健壮的深度模型。我们产生的Resnet50-Backbone模型甚至胜过最先进的DPT VIT-LALGE模型。结合基于几何的重建方法,我们制定了一种新的密集3D场景重建管道,该管道受益于稀疏点的比例一致性和单眼方法的鲁棒性。通过对视频进行简单的人均预测,可以恢复准确的3D场景形状。
translated by 谷歌翻译
我们提出了一种雷达惯性内径测量的方法,其使用连续时间框架来熔断来自多个汽车雷达的熔丝测量和惯性测量单元(IMU)。不利的天气条件对雷达传感器的操作性能不同,与相机和激光器传感器不同,对雷达传感器的操作性能没有显着影响。雷达在这种情况下的鲁棒性和乘客车辆雷达的普遍普遍激励我们来看看雷达用于自我运动估计。连续时间轨迹表示不仅应用于实现异构和异步多传感器融合的框架,还应用于通过能够计算封闭形式的姿势及其衍生物来实现高效优化,并且在任何特定时间沿着弹道。我们将我们的连续时间估计与来自离散时间雷达 - 惯性内径型方法的方法进行比较,并表明我们的连续时间方法优于离散时间方法。据我们所知,这是第一次将连续时间框架应用于雷达惯性内径术。
translated by 谷歌翻译